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1. INTRODUCTION

Of late, there has been renewed interest in the performance of segmented long rod penetrators

against a variety of armor systems. The potential benefits of segmented penetrators are based on

the qualitative advantage of multiple impacts of well-aligned and well-separated penetrator segments

when compared to that of a single equivalent penetrator. Eichelberger in 1956 suggested that the

penetration performance of a metallic jet with perfectly aligned (Eichelberger 1956), spaced

segments could be enhanced by as much as 40% over that of continuous jets. Analytical work by
Frank (1985) and numerical simulations by Kucher (1982), de Rosset (1981), de Rosset and Kimsey

(1986), Sedgwick et al. (1987) as well as experiments by Charters (1986), Raatschen et al. (1989),

Kivity, et al. (1989), Herbette (1989), and others tend to confirm enhanced penetration by well-

aligned, properly spaced segments in comparison to equivalent mass and equivalent diameter

continuous rods.

Most experiments performed to date have been confimed to specific cases with very limited
variation of relevant parameters. Calculations have also focused on selected problems. A large

number of parameters enter into the determination of penetration performance of segmented rods.

A full parametric study remains to be performed.

This report deals with numerical simulation of the penetration of homogeneous, effectively

semi-infinite, rolled homogeneous armor (RHA) targets by continuous and segmented tungsten alloy

(90% tungsten, 7% nickel, 3% iron, 25% swaged) rods. Calculations were performed varying

striking velocity (V, = 1.5, 2, 3, 4 km/s), segment spacing (ID, 2D, 4D where D = segment

diameter), and number of segments (1, 5, 10, 20). The calculations were performed with a local
version of the 1978 release of the EPIC-2 code (Johnson 1978), modified to include eroding slide

line logic (Kimsey and Zukas 1986). Selected results were verified with HULL code (Matuska and

Osborn 1987) computations. Material properties for the tungsten alloy were taken from split-

Hopkinson bar data reported by Nicholas (1980), the yield stress taken to be 14.3 kb and the

ultimate stress 20 kb at an effective plastic strain of 0.14. The RHA was modeled as an elastic-

perfectly plastic material with a flow stress of 8 kilobars.

Two levels of failure may be modeled with the version of EPIC used for these studies, based

on user-specified levels of effective plastic strain. When the first level is met, tensile and shear

stresses are not allowed to develop in the affected element. The net result is that the element
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behaves much like a liquid in that it can support only hydrodynamic compression. When the

second level of effective plastic strain is reached, all stresses and pressures are set to zero. Element

quantities are no longer included in the simulation, as though total failure had occurred. When this
option is invoked, mass and momentum continue to be conserved since the masses and velocities of

failed elements are associated with their nodes, and these are tracked throughout the computation.

Energy, however, is conserved only approximately since element internal energies are no longer
computed. This is a minor concern, however, since this latter value of strain is set at high (150-
250%) levels (for lack of better failure models) so that the elements "removed" from the calculation

would, in reality, appear as ejecta in ballistic experiments.

2. COMPUTATIONAL RESULTS

Figures 1-2 summarize results of calculations showing the effects of the number of segments,

segment spacing, and segment velocity on penetration performance. The data for these figures are

given in Tables 1-2.

2.1 Effects of Spacing and Velocity. Figure 1 and Table 1 show penetration as a function of

segment spacing and velocity for impact velocities to 2 km/s. The measure of penetration is the

ratio P/L, where P represents penetration depth (given in Table 1) and L, the initial length of a
continuous rod or the collapsed length of a segmented rod. The behavior of a segmented rod with
five segments (each with L/D = 4 and segment spacing S varied between 1-4 projectile diameters,

D,) is contrasted to that of a continuous rod of equivalent mass and diameter. It is clear that at

ordnance velocities (striking velocities of 2 km/s or less) the penetration of segmented rods, as

measured by P/L,, falls below that of a continuous rod for small segment spacings, S/D, and

approaches that of continuous rods as segment spacing is increased.

However, for striking velocities of 3 and 4 km/s, penetration by segmented rods, as measured

by P/L., shows improvement over that of continuous rods as a function of both velocity and

spacing (see Figure 2). For the situation studied here, gains of about 5% in P/L. are achieved by

going to segmentation at higher velocities. These gains can be further enhanced by 8-10% by
appropriate adjustment of segment spacing. Representative computational results for a continuous

rod at 4 km/s are shown in Figures 3-4. Figures 5-7 depict analogous results for an equal mass.

equal diameter rod consisting of five segments with S/D =4.
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The question naturally arises as to whether similar results hold for different segmentations.
Figure 8 and Table 2 show (for segmented rods with spacing fixed at S/D =2) the same trends for

projectiles with 20 segments (segment L/D = 1).

2.2 Effects of Segment Numbers. Calculations were also performed to study the effect of the
number of segments on normalized penetration. Figure 8 and Table 2 summarize results for a
continuous rod (I segment) as well as rods consisting of 5 (segment L/D = 4), 10 (segment
L/D = 2), and 20 (segment L/D = 1) segments striking semi-infinite RHA at velocities of 2, 3, and

4 km/s. Segment spacing was held at 2 diameters (S/D = 2). At 2 km/s, P/L. is unchanged by
varying the number of segments, within L.. ,,curacy of the numerical resolution employed in these
studies. At the higher velocities, there is a modest gain. For example, for a 20-segment rod at
4 km/s, there is a 20% gain in P/L. over that for a continuous rod, 12% for a 10-segment rod, and
6% for a 5-segment rod. For greater spacings, improvements on the order of 30% can be obtained.
Recall, however, that these results are for the ideal case -- no initial yaw and segments perfectly
aligned. In practice, such conditions are almost never realized, so that these can be considered as
an upper limit on possible performance gains.

Typical deformations at various times after impact for a 20-segment rod at a striking velocity of

3 km/s are depicted in Figure 9.

2.3 PA. as a Penetration Performance Measure. It is the current custom to cast segmented

penetrator results in terms of the nondimensional parameter P/L, with L being taken as the
collapsed length of a segmented penetrator. It is always dangerous to depict situations involving a
complex interaction of a number of variables in terms of a single parameter. That P/L is an
imperfect measure of segmented penetrator performance can be seen in Figure 10 and Table 3,
which merely recast the data in Table 2 using two normalization parameters - the collapsed length

L, and the extended length L. As Scheffler (1989) has pointed out, the latter is a more natural
normalization factor. Many segmented rod configurations are launched with the presence of spacer
materials which can affect penetration or are designed to extend in flight. To the degree to which
such in-flight extensions are successful, they affect the spacing and, thus, the final penetration.
Note from Figure 10 that conflicting conclusions can be drawn about the effectiveness of segmented
penetrators depending on the normalization (collapsed or extended length) chosen. At minimum,
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segmented rod information should be provided with raw data together with any normalizations

deemed appropriate.

3. CONCLUSIONS

The simulations performed for this study indicate that, in terms of penetration performance:

a. There is no advantage to segmented rods over continuous rods at velocities below

2 km/s.

b. Segmented rods show improved penetration performance over continuous rods with

proper adjustments of segment number and spacing for striking velocities exceeding

2 km/s.

c The ratio of penetration to penetrator length is inadequate as a measure of

performance for a complex impact situation influenced by a large number of

parameters. To minimize confusion, raw data should be presented for segmented

penetrator impacts. Otherwise, caveat emptor applies! As Scheffler (1989) has

pointed out, and as is clear from Figure 10 and Table 3, the ratio of penetration to

penetrator length may not be a good indicator of penetrator performance of

segmented rods. Depending on the interpretation of length (collapsed or extended),

conflicting conclusions can be drawn.
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CONTINUOUS ROD (L/D=20)

----------------SEGMENTED ROD (SEGMENT L/D=4)
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Figure 1. Comparison of Penetration Performance of Segmented

and Equivalent/Mass-Equivalent Diameter -Continuous

Rods at Impact Velocities Below 2 km/s.
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CONTINUOUS ROD (L/D=20)

SEGMENTED ROD (SEGMENT L/D=4)

1.6- X------ Vs = 4Km/s

1.5- _--O -
p JVs = 3Km/s
Lo
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1.3-

I I I l

1 2 3 4
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Figure 2. Comparison of Penetration Performance of Semennted and
Equivalent Mass-Equivalent Diameter Continuous Rods at
Impact Velocities Above 2 km/s.
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TABLE 1. Penetration Performance of Continuous and Segmented Rods.

Continuous

Vs P P/L.
km/s cm

1.5 19.2 0.92

2.0 24.0 1.20

3.0 28.2 1.41

4.0 30.4 1.52

Segmented

V, S/D P P/Lo
km/s cm

1.5 1 18.0 0.90

2 18.4 0.92

4 19.4 0.98

2.0 1 22.0 1.10

2 24.0 1.20

4 24.0 1.20

3.0 1 29.6 1.48

2 29.7 1.48

4 30.2 1.51

4.0 1 32.0 1.60

2 32.0 1.60

4 33.3 1.67

L, = length of continuous rod/collapsed length of segmented rod.
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TABLE 2. Effect of Segmentation on Penetration.

V, N P P/L0
km/s cm

2 1 24.0 1.20

5 24.0 1.20

10 24.0 1.20

20 24.0 1.20

3 1 28.2 1.41

5 29.4 1.47

10 30.4 1.52

20 32.0 1.60

4 1 30.4 1.52

5 32.2 1.61

10 34.2 1.71

20 36.5 1.82

N = number of segments (1 = continuous rod).

Lo= length of continuous rod/collapsed length of segmented rod.
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TABLE 3. Comparison of Penetration Data With Different Normalizations.

V, N L. L P P/Lo  P/L
km/s cm cm cm

2 1 20 20 24 1.2 1.2

5 20 28 24 1.2 0.86

10 20 38 24 1.2 0.63

20 20 58 24 1.2 0.41

3 1 20 20 28.2 1.41 1.41

5 20 28 29.4 1.47 1.05

10 20 38 30.4 1.52 0.80

20 20 58 32 1.60 0.55

4 1 20 20 30.4 1.52 1.52

5 20 28 32.2 1.61 1.15

10 20 38 34.2 1.71 0.90

20 20 58 36.5 1.82 0.63

L. = length of continuous rod/collapsed length of segmented rod.

L = extended length of segmented rod.
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